Development of a rapid multiplex PCR assay to genotype Pasteurella multocida strains by use of the lipopolysaccharide outer core biosynthesis locus.

نویسندگان

  • Marina Harper
  • Marietta John
  • Conny Turni
  • Mark Edmunds
  • Frank St Michael
  • Ben Adler
  • P J Blackall
  • Andrew D Cox
  • John D Boyce
چکیده

Pasteurella multocida is a Gram-negative bacterial pathogen that is the causative agent of a wide range of diseases in many animal species, including humans. A widely used method for differentiation of P. multocida strains involves the Heddleston serotyping scheme. This scheme was developed in the early 1970s and classifies P. multocida strains into 16 somatic or lipopolysaccharide (LPS) serovars using an agar gel diffusion precipitin test. However, this gel diffusion assay is problematic, with difficulties reported in accuracy, reproducibility, and the sourcing of quality serovar-specific antisera. Using our knowledge of the genetics of LPS biosynthesis in P. multocida, we have developed a multiplex PCR (mPCR) that is able to differentiate strains based on the genetic organization of the LPS outer core biosynthesis loci. The accuracy of the LPS-mPCR was compared with classical Heddleston serotyping using LPS compositional data as the "gold standard." The LPS-mPCR correctly typed 57 of 58 isolates; Heddleston serotyping was able to correctly and unambiguously type only 20 of the 58 isolates. We conclude that our LPS-mPCR is a highly accurate LPS genotyping method that should replace the Heddleston serotyping scheme for the classification of P. multocida strains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LPS-PCR typing of ovine Pasteurella multocida isolates from Iran based on (L1 to L8) outer core biosynthesis loci

Pasteurella multocida isa gram-negative bacterial pathogen that is causative agent of a wide range of diseases in many animal species and humans. Lipopolysaccharides (LPS) are an important virulence factor, minor changes to structure of which can exert dramatic effects on pathogenicity of P. multocida in its host. LPS can be used for the identification and classification of strains with somatic...

متن کامل

Pasteurella multocida Heddleston serovar 3 and 4 strains share a common lipopolysaccharide biosynthesis locus but display both inter- and intrastrain lipopolysaccharide heterogeneity.

Pasteurella multocida is a Gram-negative multispecies pathogen and the causative agent of fowl cholera, a serious disease of poultry which can present in both acute and chronic forms. The major outer membrane component lipopolysaccharide (LPS) is both an important virulence factor and a major immunogen. Our previous studies determined the LPS structures expressed by different P. multocida strai...

متن کامل

Structural analysis of lipopolysaccharide produced by Heddleston serovars 10, 11, 12 and 15 and the identification of a new Pasteurella multocida lipopolysaccharide outer core biosynthesis locus, L6.

Pasteurella multocida is a Gram-negative bacterial pathogen classified into 16 serovars based on lipopolysaccharide (LPS) antigens. Previously, we have characterized the LPS outer core biosynthesis loci L1, L2, L3, L5 and L7, and have elucidated the full range of LPS structures associated with each. In this study, we have determined the LPS structures produced by the type strains representing t...

متن کامل

Structure and biosynthetic locus of the lipopolysaccharide outer core produced by Pasteurella multocida serovars 8 and 13 and the identification of a novel phospho-glycero moiety.

Pasteurella multocida strains are classified into 16 Heddleston serovars on the basis of the lipopolysaccharide (LPS) antigens expressed on the surface of the bacteria. The LPS structure and the corresponding LPS outer core biosynthesis loci of strains belonging to serovars 1, 2, 3, 5, 9 and 14 have been characterized, revealing a clear structural basis for serovar classification. However, seve...

متن کامل

Characterization of the lipopolysaccharide from Pasteurella multocida Heddleston serovar 9: identification of a proposed bi-functional dTDP-3-acetamido-3,6-dideoxy-α-D-glucose biosynthesis enzyme.

Pasteurella multocida strains are classified into 16 different lipopolysaccharide (LPS) serovars using the Heddleston serotyping scheme. Ongoing studies in our laboratories on the LPS aim to determine the core oligosaccharide (OS) structures expressed by each of the Heddleston type strains and identify the genes and transferases required for the biosynthesis of the serovar-specific OSs. In this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of clinical microbiology

دوره 53 2  شماره 

صفحات  -

تاریخ انتشار 2015